Answer:
Option A,D
Explanation:
(a) At equilibrium (t=0) particle has maximum velocity u0. Therefore velocity at time t can be written as
$u=u_{max}\cos \omega t+u_{0}\cos \omega t$
writing, u=0.5 u0=u0 cos ω t
$\therefore$ $\omega t=\frac{\pi}{3}$
$\therefore$ $\frac{2\pi}{T}t=\frac{\pi}{3}$ $\therefore$ $t=\frac{T}{6}$
(b) $t=t_{AB}+t_{BA}=\frac{T}{6}+\frac{T}{6}=\frac{T}{3}=\frac{2\pi}{3}\sqrt{\frac{m}{k}}$
(c) $t=t_{AB}+t_{BA}+t_{AC}=\frac{T}{6}+\frac{T}{6}+\frac{T}{4}=\frac{7}{12}T=\frac{7\pi}{6}\sqrt{\frac{m}{k}}$
(d) $t=t_{AB}+t_{BA}+t_{AC}+t_{CA}=\frac{T}{6}+\frac{T}{6}+\frac{T}{4}+\frac{T}{4}=\frac{5}{6}T=\frac{5\pi}{3}\sqrt{\frac{m}{k}}$